Publications of the Liu group

Dr. Liu’s Google Scholar account and ORCID number: 0000-0001-5546-3852

† equal contribution, * corresponding author.
◊ undergraduate student when conducting the research.

    1. “Bisulfate as a Redox-active Ligand in Vanadium-based Electrocatalysis for CH4 functionalization”, Xiang, D.†; Lin, S.-C.†; Deng, J.; Chen, H. M.*; Liu, C.*, submitted.
    2. “A Generalized Kinetic Model for Compartmentalization of Organometallic Catalysis”, Jolly, B.; Diaconescu, P. L.*; Liu, C.*, submitted.
    3. “Biodegradable ABAB tetrablock copolymers by electrochemically controlled ring-opening polymerization”, Hern, Z. C.; Quan, S.; Dai, R.; Lai, A.; Wang, Y.◊; Liu, C.*; Diaconescu, P. L.*. J. Am. Chem. Soc.2021, accepted. LinkAbstract

      In collaboration with Prof. Diaconescu’s lab at UCLA, we developed a redox-switchable polymerization catalysts whose polymerization selectivity and reactivity can be electrochemically controlled.

    4. “Electrocatalytic Methane Functionalization with d0 Early Transition Metals Under Ambient Conditions”, Deng, J.†; Lin, S.-C.†; Fuller, J. T.†; Zandkarimi, B.; Chen, H. M.*; Alexandrova, A. N.*; Liu, C.*, Angew. Chem. Int. Ed., 2021, accepted. Link. Abstract

      After our discovery that d0 V-oxo dimer is a good pre-catalyst for electrocatalytic CH4 activation, we found that all d0 early transition metal-oxo species can participate in ambient CH4 electrocatalysis.

    5. “Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells”, Cao, B.; Zhao, Z.; Peng, L.; Shui, H.; Ding, M.; Song, F.; Guan, X.; Lee, C. K.; Huang, J.; Zhu, D.; Fu, X.; Wong, G. C. L.; Liu, C.; Nealson, K.; Weiss, P. S.; Duan, X.*; Huang, Y.*; Science, 2021, 373, 1336−1340. Link.
    6. “Microscopic control of non-equilibrium systems: when electrochemistry meets nanotechnology”, Liu, C.*, Nano Lett., 2021, 18, 7429−7431 (invited Viewpoint). LinkAbstract

      In this Viewpoint, Chong argues that the integration of electrochemistry and nanoscience offers spatiotemporal control of non-equilibrium systems at the microscopic level, which can be applied to address challenges in catalysis and microbiology.

    7. De novo approach to encapsulating biocatalysts into synthetic matrixes: from enzymes to microbial electrocatalysts”, Sheng, T.; Guan, X.; Liu, C.; Su, Y.*, ACS Appl. Mater. Interfaces, 2021, 13, 52234−52249. (An invited review in a Forum on “Emerging Materials for Catalysis and Energy Applications — A Special Forum in Memory of Professor Chia-Kuang (Frank) Tsung”). LInk.
    8. “AgII-mediated Electrocatalytic Ambient CH4 Functionalization Inspired by HSAB Theory”, Xiang, D.; Iñiguez, J. A.; Deng, J.; Guan, X.; Martinez, A.◊; Liu, C.*, Angew. Chem. Int. Ed.2021, 60, 18152−18161. Link. Abstract

      As the products of CH4 homolytic cleavage, H• and CH3•, are chemically soft, we hypothesize that soft, high-valent class (b) metal species are suitable intermediates towards CH4 activation. Motivated by such a hypothesis, we explored the electrocatalytic CH4 functionalization mediated by AgII metalloradical, the last class (b) transition metal whose reactivity towards CH4 is unknown. Ambient electrocatalytic CH4 functionalization with high selectivity and low activation energy was observed.

    9. “Perfluorocarbon Nanoemulsions Create a Beneficial O2 Microenvironment in N2-fixing Biological | Inorganic Hybrid”, Lu, S.; Rodrigues, R. M.; Huang, S.◊; Chapman, J. O.◊; Guan, X.; Sletten, E. M.; Liu, C.*, Chem Catal.20211, 704−720. Link. Abstract

      As a follow-up of our 2019 Nature Catalysis paper, we discovered that PFC nanoemulsions can create a O2 microenvironment locally favorable  towards O2-sensitive bacteria for ambient N2 fixation

    10. “Efficacy analysis of compartmentalization for ambient CH4 activation mediated by RhII metalloradical in nanowire array electrode”, Natinsky, B. S.†; Jolly, B. J.†; Dumas, D. M.◊; Liu, C.*; Chem. Sci., 2021, 12, 1818−1825. Link. Abstract

      As a follow-up of our previously reported catalytic cycle of seemingly incompatible steps enabled by nanowire array for CH4-to-CH3OH conversion, we integrated theoretical analysis with experimental results and determined the nanowire array’s efficacy in the context of microscopic compartmentalization.

    11. “Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer”, Deng, J.; Lin, S.-C.; Fuller, J.; Iñiguez, J. A.; Xiang, D.; Yang, D.; Chan, G.◊; Chen, H. M.*; Alexandrova, A. N.*; Liu, C.*, Nature Commun., 202011, 3686. LinkAbstract
      41467_2020_17494_Fig1_HTML

      We report an accidental finding for ambient electrocatalytic functionalization of methane, by simply dissolving V2O5 in 98% H2SO4 as the catalyst.

    12. “Machine-Learning Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation”, Hoar, B. B.; Lu, S.; Liu, C.*, J. Phys. Chem. Lett.2020, 11, 4625−4630. LinkAbstract
      TOC-01

      We developed a neural network model that predicts the electrocatalytic activities of N2 reductions on wire array electrodes, which shortens the time of morphology optimization by a factor of about 1000. The python codes are freely available at Github.

    13. “Electricity-Powered Artificial Root Nodule”, Lu, S.; Guan, X.; Liu, C.*, Nature Commun., 2020, 11, 1505. LinkAbstract
      Untitled-1-01

      We constructed an electricity-powered artificial root nodule of nitrogen fixation, which houses the O2 gradient and symbiotic diazotrophic bacteria found in its natural counterpart.

    14. “Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation”, Su, Y.†; Cestellos-Blanco, S.†; Kim, J. M.†; Shen, Y.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P.*, Joule2020, 4, 800−811. Link.
    15. “Cluster Size Control toward High Performance Solution Processed InGaZnO Thin Film Transistor”, Wang, Z.; Xu, G.; Zhao, Z.; Cai, L.; Wu, Q.; Cheng, P.; Zhao, Y.; Xue, J.; Wang, R.; Liu, C.*; Yang, Y.*, ACS Appl. Electron. Mater.2019, 1, 2483−2488. link.
    16. “A solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol”, Natinsky, B.; Lu, S.; Copeland, E.◊; Quintana, J.◊; Liu, C.*, ACS Cent. Sci., 2019, 5, 1584−1590. link. (Highlighted by ACS Cent. Sci.) Abstract
      Hero image_2-01

      Nanowire array electrode helps establish a catalytic cycle of incompatible steps, which enables electricity-assisted CH4-to-CH3OH conversion at ambient conditions. (Highlighted by ACS Cent. Sci.)

    17. “Nanowire photoelectrochemistry”, Deng, J.; Su, Y.; Liu, D.; Yang, P.*; Liu, B.*; Liu, C.*, Chem. Rev.2019, 15, 9221−9259. link. Abstract
      TOC_1

      We provide a detailed discussion about the development and potential advantages of nanowires for photoelectrochemistry

    18. “Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction”, Rodrigues, R.; Guan, X.; Iñiguez, J.; Estabrook, D.; Chapman, J.◊; Huang, S.◊; Sletten, E.; Liu, C.*, Nature Catal., 20192, 407−414. Link. Abstract

      We developed a new method to accelerate the throughput of microbial CO2 reduction driven by electricity.

    19. “Two are better than one”, Natinsky, B.; Liu, C.*, Nature Chem. (News & Views), 2019, 11, 200−201. Link. Abstract

      We highlight a recent report that fine-tunes the interactions in the second coordinating sphere on a material’s surface for electrochemical reduction of CO2.

    20. “Modelling of Electrocatalytic Dinitrogen Reduction on Micro-structured Electrodes”, Lu, S.; Lee, D. H.◊; Liu, C.*, Small Methods2019, 3, 1800332. Link. Abstract

      We applied numerical simulation to study how the electrode morphology at nano-scale will change the reactivity of electrochemical reduction of N2.

    21. “Boron-Doped Graphene Catalyzes Dinitrogen Fixation with Electricity”, Deng, J.; Liu, C.*, Chem (preview), 20184, 1773-1774. Link. Abstract
      Figure 1

      We highlight one recent paper published in Joule which reports boron-doped graphene as catalysts for electrochemical dinitrogen reduction.

    22. Solar-powered CO2 reduction by a hybrid biological | inorganic system”, Liu, C.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; J. Photochem. Photobio. A, 2018358, 411−415, Link.Abstract
      1-s2.0-S1010603017312649-gr1_lrg

      Triple-junction solar cell powers microbes for CO2 reduction with overall energy efficiency up to 6%

    23. “Electrocatalytic nitrogen reduction at low temperature”, Deng, J.; Iniguez, J. A.; Liu, C.*; Joule, 2018, 2, 846−856, Link. Abstract
      TOC-01.jpg

      This perspective discusses recent efforts devoted to nitrogen fixation in electrochemical systems operating at low temperatures, and the challenges confronting high selectivity for NH3 production as a result of the competition between the nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER).

    24. “Physical Biology of the Materials-Microorganism Interface”, Sakimoto, K. K.; Kornienko, N.; Cestellos-Blanco, S.; Lim, J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc., 2018140, 1978−1985. Link Abstract
      ja-2017-11135m_0005

      This perspective highlights the state-of-the-art research at the material-microorganism interface. Two basic qeustions are asked: 1) How do materials transfer energy and charge to microorganisms? 2) How do we design for bio- and chemocompatibility between seemingly unnatural partners?

    25. “Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach”, Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han. X.; Tsung, C.-K.; Ling, X. Y.*; Science Advances20184, eaar3208. Link
    26. “Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3“, Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; Nature Mater., 201716, 819−825. Link

    27. “Ambient nitrogen reduction cycle using a hybrid inorganic-biological system”, Liu, C.†; Sakimoto, K. K.†; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; PNAS2017114, 6450−6455. Link
    28. “Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid”, Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G.*; Chem. Sci., 20178, 4779−4794. Link
    29. “13C-Labeling the Carbon-Fixation Pathway of a Highly Efficient Artificial Photosynthetic System”, Liu, C.; Nangle, S. N.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; Faraday Discuss., 2017198, 529−537. Link
    30. “Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction” Kong, Q.†; Kim, D.†; Liu, C.; Yu, Y.; Su, Y.; Li, Y.;Yang, P.*; Nano Lett.201616, 5675−5680. Link
    31. “Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis” Liu, C.†; Colón, B. C.†; Ziesack, M.; Silver, P. A.*; Nocera, D. G.*; Science2016352, 1210−1213. Link
    32. “Single-nanowire photoelectrochemistry” Su, Y.†; Liu, C.†; Brittman S.; Tang, J.; Fu, A.; Kornienko, N.; Kong, Q.; Yang, P.*; Nature Nanotech.201611, 609−612. Link
    33. Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals” Liu, C.†; Gallagher, J. J.†; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.*; Chang, M. C. Y.*; Yang, P.*; Nano Lett., 201515, 3634−3639. Link
    34. “Hybrid bioinorganic approach to solar-to-chemical conversion” Nichols, E. M.†; Gallagher, J. J.†; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.*; Chang, M. C. Y.*; Chang, C. J.*; PNAS2015112, 11461−11466. Link
    35. “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction”, Zhang, L.†; Liu, C.†; Wong, A. B.; Resasco, J.; Yang, P.*; Nano Res.20158, 281−287. Link
    36. “Nanowires for Photovoltaics and Artificial Photosynthesis”, Yang, P.*; Brittman, S.; Liu, C.; Semiconductor Nanowires, Royal Society of Chemistry, 2014, Chapter 6, p277 (Book chapter).
    37. “Introductory lecture: Systems materials engineering approach for solar-to-chemical conversion” Liu, C.; Yang, P.*; Faraday Discuss.2014176, 9−16.(Perspective) Link
    38. Three-Dimensional Spirals of Atomic Layered MoS2″ Zhang, L.; Liu, K.; Wong, A. B.; Kim, J.; Hong, X.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.*; Yang, P.*; Nano Lett.201414, 6418−6423. Link
    39. Salt-Induced Self-Assembly of Bacteria on Nanowire Arrays” Sakimoto, K. K.; Liu, C.; Lim, J.; Yang, P.*; Nano Lett.201414, 5471−5476. Link
    40. “25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications” Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P.*; Adv. Mater.201426, 2137−2184. (Review) Link
    41. “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation” Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X.*; Nano Lett.201414, 1099−1105. Link
    42. Semiconductor Nanowires for Artificial Photosynthesis” Liu, C.; Dasgupta, N. P.; Yang, P.*; Chem. Mater.201426, 415−422. (Review) Link
    43. Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water” Sun, Y.†; Liu, C.†; Grauer, D. C.; Yano, J.; Long, J. R.*; Yang, P.*; Chang, C. J.*; J. Am. Chem. Soc.2013135, 17699−17702. Link
    44. “Femtosecond M2,3-Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe2O3” Vura-Weis, J.; Jiang, C.-M.; Liu, C.; Gao, H.; Lucas, J. M.; de Groot, F. M. F.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; J. Phys. Chem. Lett., 20134, 3667−3671. Link
    45. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction” Dasgupta, N. P.†; Liu, C.†; Andrews, S.; Prinz, F. B.; Yang, P.*; J. Am. Chem. Soc.2013135, 12932−12935. Link
    46. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential” Liu, B.†; Chen, H. M.†; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P.*; J. Am. Chem. Soc.2013135, 9995−9998. Link
    47. “A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting” Liu, C.†; Tang, J.†; Chen, H. M.; Liu, B.; Yang, P.*; Nano Lett.201313, 2989−2992. Link
    48. “Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates” Ling, X. Y.; Yan, R.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P.*; Nano Res.20147, 132−143. Link
    49. Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis” Liu, C.; Sun. J.; Tang, J.; Yang, P.*; Nano Lett.201212, 5407−5411. Link
    50. Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars” Gao, H.†; Liu, C.†; Jeong, H. E.; Yang, P.*; ACS Nano20126, 234−240. Link
    51. Light-Induced Charge Transport within a Single Asymmetric Nanowire” Liu, C.†; Hwang, Y. J.†; Jeong, H. E.; Yang, P.*; Nano Lett201111, 3755−3758. Link
    52. Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction” Sun. J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc., 2011133, 19306−19309. Link
    53. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System” Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D.*; J. Am. Chem. Soc.2010132, 8466−8473. Link
    54. Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness” Zhang, J.; Deng, Y.*; Wei, J.; Sun, Z.; Gu, D.; Bongard, H.; Liu, C.; Wu, H.; Tu, B.; Schüth, F.; Zhao, D.*; Chem. Mater.200921, 3996−4005. Link
    55. Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties” Yue, W.; Xu, X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H.; Zhao, D.; Zhou, W.*; Chem. Mater.200921, 2540−2546. Link
    56. “A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls” Liu, J.; Deng, Y.*; Liu, C.; Sun, Z.; Zhao, D.*; J. Colloid Interface Sci.2009333, 329−334. Link
    57. “Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin” Deng, Y.; Deng, C.; Qi, D.; Liu, C.; Liu, J.; Zhang, X.; Zhao, D.; Adv. Mater.200921, 1377−1382. Link
    58. “Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process” Liu, C.; Deng, Y.*; Liu, J.; Wu, H.; Zhao, D.; Micro. Meso. Mater.2008116, 633−640. Link
    59. Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander” Deng, Y.; Liu, J.; Liu, C.; Gu, D.; Sun, Z.; Wei, J.; Zhang, J.; Zhang, J.; Tu, B.; Zhao, D.*; Chem. Mater.200820, 7281−7286. Link
    60. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles” Deng, Y.; Liu, C.; Liu, J.; Zhang, F.; Yu, T.; Zhang, F.; Gu, D.; Zhao, D.; J. Mater. Chem.200818, 408−415. Link
    61. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer” Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D.; J. Mater. Chem.200818, 91−97. Link
    62. “Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach” Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A.; Wang, H.; Zhao, D.*; Chem. Mater.200719, 3271−3277. Link
    63. Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene” Deng, Y.; Yu, T.; Wan, Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu, C.; Wu, X.; Zhao, D.; J. Am. Chem. Soc.2007129, 1690−1697. Link