Publications of the Liu group

Dr. Liu’s Google Scholar account and ORCID number: 0000-0001-5546-3852

† equal contribution, * corresponding author, ◊ undergraduate student when conducting the research.

(Nano)materials; Machine-learning; Microorganisms; Synthetic catalysis; Other.

    1.  “Performance evaluation and multidisciplinary analysis in material-microbe catalytic hybrids”, Guan, X.†; Xie, Y.†; Liu, C.*, submitted (Perspective)
    2.  “Synergistic Material-Microbe Interface towards Deeper Anaerobic Defluorination”, Che, S.†; Guan, X.†; Rodrigues, R.; Yu, Y.; Xie, Y.; Liu, C.*; Men, Y.*, submitted.
    3.  “Unexpected metabolic reallocation of CO2 fixation in H2-mediated materials-biology hybrids”, Xie, Y.; Erşan, S.; Guan, X.; Wang, J.; Sha, J.; Xu, S.; Wohlschlegel, J. A.; Park, J. O.; Liu, C.*, Proc. Natl. Acad. Sci. U.S.A., 2023, accepted. Abstract
      Figure 4_CL-01

      When the materials and microbes are not in physical contact with each other, it is commonly assumed that the materials component that facilitates an electron transfer mediated by redox molecules such as H2 does not serve to perturb microbial metabolism significantly. However, this study revealed that the electrochemical system can induce a fortuitous metabolic rewiring in planktonic bacterial cells and an increased efficiency of utilizing provided reducing equivalents for CO2 fixation.

    4. “Enhancing the Value of Large-Enrollment Course Evaluation Data Using Sentiment Analysis”, Hoar, B.; Ramachandran, R.; Levis-Fitzgerald, M.; Sparck, E. M.; Wu, K.◊; Liu, C.*, J. Chem. Edu., 2023, ASAP. link. Abstract

      We show an approach to summarizing and organizing students’ opinions as a function of the language used in their course evaluations, specifically focusing on developing software that outputs actionable, specific feedback about course components in large-enrollment STEM contexts

    5. “What and how can machine learning help to decipher mechanisms in molecular electrochemistry?”, Sun, J., Liu, C.*, Curr. Opin. Electrochem., 2023, 39, 101306. link. (reviewAbstract
      Graphical abstract-1

      In this perspective, we offer our visions about how machine-learning will lead to a probability-based mechanistic analysis of electrochemical data.

    6. “Investigating limitations of biohybrid photoelectrode using synchronized spectroelectrochemistry”, Xie, Y.; Liu, C.*, Joule2023, 7, 457−459. link. (Preview)
    7.  “The art of compartment design for organometallic catalysis”, Davis, A. R.◊; Liu, C.; Diaconescu, P. L.*, Inorg. Chem. Front., 2023, 10, 1402−1410 . link. (review)
    8.  “Polyketones from carbon dioxide and ethylene by integrating electrochemical and organometallic catalysis”, Dodge, H. M.†; Natinsky, B. S.†; Jolly, B. J.†; Zhang, H.; Mu, Y.; Chapp, S. M.; Tran, T. V.; Diaconescu, P. L.; Do, L. H.; Wang, D.*; Liu, C.*; Miller, A. J. M.*, ACS Catal2023, 13, 4053−4059. link. Abstract

      In collaborations with the groups of Prof. Alex Miller (UNC Chapel Hill) and Prof. Dunwei Wang (Boston College), we demonstrated an integrated system that for electrochemistry-assisted polyketone synthesis. Our design bridges the seemingly irreconcilable reaction conditions of electrocatalysis and organometallic reactions in the context of integrated catalysis.

    9. “Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot−bacteria hybrids”, Guan, X.; Erşan, S.; Hu, X.; Atallah, T. L.; Xie, Y.; Lu, S.; Cao, B.; Sun, J.; Wu, K.◊; Huang, Y.; Duan, X.; Caram, J. R.; Yi, Y.; Park, J. O.; Liu, C.*, Nature Catal., 20225, 1019−1029. Link. (highlighted by Nature Catal.Abstract

      We discovered a nano-bio interface that maximizes the quantum yield of photocatalytic CO2/N2 fixation in a hybrid system of microbes and semiconductor quantum dots (QDs). Systematic characterizations in materials, photophysics, proteomics and metabolomics offer insights to explain the high efficiency.

    10. “Electrochemical mechanistic analysis from cyclic voltammograms based on deep learning”, Hoar, B. B.; Zhang, W.; Xu, S.; Deeba, R.; Costentin, C.*; Gu, Q.*; Liu, C.*, ACS Meas. Sci. Au, 2022, 2, 595−604. Link. Abstract

      We report a deep-learning algorithm that automatically analyzes cyclic voltammograms and designates a probable electrochemical mechanism. An automated analysis promises autonomous high-throughput research in electrochemistry with minimal human interference.

    11. “Interfacial engineering gives enhanced selectivity in electrochemical nitrogen reduction reaction”, Xu, S.; Liu, C.*, Chem Catal. (preview)20222, 1841−1843. Link.
    12. “Machine-learning-based inverse design for electrochemically controlled microscopic gradients of O2 and H2O2“, Chen, Y.†; Wang, J.†; Hoar, B. B.†; Lu, S.; Liu, C.*, Proc. Natl. Acad. Sci. U.S.A., 2022, 119, e2206321119. Link. Abstract

      We developed an inverse design strategy based on machine learning (ML) that predicts electrodes’ morphologies for electrochemically generated microenvironments of O2 and H2O2.

    13. ▲ “Spatial decoupling boosts CO2 electro-biofixation”, Sheng, H.; Liu, C.*, Nature Catal. (News & Views)20225, 357−358. LinkAbstract

      In the News & Views, we highlight a recent paper that integrates electrochemical reduction of CO2 with microbial metabolisms for the production of sugars and other nutrients.

    14. “Bisulfate as a Redox-active Ligand in Vanadium-based Electrocatalysis for CH4 functionalization”, Xiang, D.†; Lin, S.-C.†; Deng, J.; Chen, H. M.*; Liu, C.*, Chem. Commun., 2022, 58, 2524−2527. Link. (Themed collection of “Functionalization of unreactive C−H bonds”Abstract

      As shown in this artistic illustration above, we found that replacing one bisulfate ligand with biphosphate in our previously reported electrocatalyst of vanadium (V)-oxo dimer will significantly damp if not quench its electrocatalytic activities in ambient CH4 activation. This leads us to suggest that the step of C−H activation involves the O atom in the bisulfate ligand which is redox active during the electrocatalysis.

    15. “A Generalized Kinetic Model for Compartmentalization of Organometallic Catalysis”, Jolly, B. J.; Co, N. H.◊; Davis, A. R.◊; Diaconescu, P. L.*; Liu, C.*, Chem. Sci., 2022, 13, 1101−1110. Link. Abstract

      In collaboration with Prof. Paula Diaconescu’s lab, we developed a general kinetic model that not only predicts the merits of compartmentalization for organometallic reactions but also the specific compartment properties that are needed to maximize such merits.

    16. “ABC and ABAB block copolymers by electrochemically controlled ring-opening polymerization”, Hern, Z. C.; Quan, S.; Dai, R.; Lai, A.; Wang, Y.◊; Liu, C.*; Diaconescu, P. L.*. J. Am. Chem. Soc.2021, 143, 19802−19808. LinkAbstract

      In collaboration with Prof. Diaconescu’s lab at UCLA, we developed a redox-switchable polymerization catalysts whose polymerization selectivity and reactivity can be electrochemically controlled.

    17. “Electrocatalytic Methane Functionalization with d0 Early Transition Metals Under Ambient Conditions”, Deng, J.†; Lin, S.-C.†; Fuller, J. T.†; Zandkarimi, B.; Chen, H. M.*; Alexandrova, A. N.*; Liu, C.*, Angew. Chem. Int. Ed., 202160, 26630−26638. Link. Abstract

      After our discovery that d0 V-oxo dimer is a good pre-catalyst for electrocatalytic CH4 activation, we found that all d0 early transition metal-oxo species can participate in ambient CH4 electrocatalysis.

    18. “Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells”, Cao, B.; Zhao, Z.; Peng, L.; Shui, H.; Ding, M.; Song, F.; Guan, X.; Lee, C. K.; Huang, J.; Zhu, D.; Fu, X.; Wong, G. C. L.; Liu, C.; Nealson, K.; Weiss, P. S.; Duan, X.*; Huang, Y.*; Science, 2021, 373, 1336−1340. Link.
    19. “Microscopic control of non-equilibrium systems: when electrochemistry meets nanotechnology”, Liu, C.*, Nano Lett., 2021, 18, 7429−7431 (invited Viewpoint). LinkAbstract

      In this Viewpoint, Chong argues that the integration of electrochemistry and nanoscience offers spatiotemporal control of non-equilibrium systems at the microscopic level, which can be applied to address challenges in catalysis and microbiology.

    20. De novo approach to encapsulating biocatalysts into synthetic matrixes: from enzymes to microbial electrocatalysts”, Sheng, T.; Guan, X.; Liu, C.; Su, Y.*, ACS Appl. Mater. Interfaces, 2021, 13, 52234−52249. (An invited review in a Forum on “Emerging Materials for Catalysis and Energy Applications — A Special Forum in Memory of Professor Chia-Kuang (Frank) Tsung”). LInk.
    21. “AgII-mediated Electrocatalytic Ambient CH4 Functionalization Inspired by HSAB Theory”, Xiang, D.; Iñiguez, J. A.; Deng, J.; Guan, X.; Martinez, A.◊; Liu, C.*, Angew. Chem. Int. Ed.2021, 60, 18152−18161. Link. Abstract
      TOC v4_2

      As the products of CH4 homolytic cleavage, H• and CH3•, are chemically soft, we hypothesize that soft, high-valent class (b) metal species are suitable intermediates towards CH4 activation. Motivated by such a hypothesis, we explored the electrocatalytic CH4 functionalization mediated by AgII metalloradical, the last class (b) transition metal whose reactivity towards CH4 is unknown. Ambient electrocatalytic CH4 functionalization with high selectivity and low activation energy was observed.

    22. “Perfluorocarbon Nanoemulsions Create a Beneficial O2 Microenvironment in N2-fixing Biological | Inorganic Hybrid”, Lu, S.; Rodrigues, R. M.; Huang, S.◊; Chapman, J. O.◊; Guan, X.; Sletten, E. M.; Liu, C.*, Chem Catal.20211, 704−720. Link. Abstract

      As a follow-up of our 2019 Nature Catalysis paper, we discovered that PFC nanoemulsions can create a O2 microenvironment locally favorable  towards O2-sensitive bacteria for ambient N2 fixation

    23. “Efficacy analysis of compartmentalization for ambient CH4 activation mediated by RhII metalloradical in nanowire array electrode”, Natinsky, B. S.†; Jolly, B. J.†; Dumas, D. M.◊; Liu, C.*; Chem. Sci., 2021, 12, 1818−1825. Link. Abstract
      TOC Figure-01

      As a follow-up of our previously reported catalytic cycle of seemingly incompatible steps enabled by nanowire array for CH4-to-CH3OH conversion, we integrated theoretical analysis with experimental results and determined the nanowire array’s efficacy in the context of microscopic compartmentalization.

    24. “Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer”, Deng, J.; Lin, S.-C.; Fuller, J.; Iñiguez, J. A.; Xiang, D.; Yang, D.; Chan, G.◊; Chen, H. M.*; Alexandrova, A. N.*; Liu, C.*, Nature Commun., 202011, 3686. LinkAbstract

      We report an accidental finding for ambient electrocatalytic functionalization of methane, by simply dissolving V2O5 in 98% H2SO4 as the catalyst.

    25. “Machine-Learning Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation”, Hoar, B. B.; Lu, S.; Liu, C.*, J. Phys. Chem. Lett.2020, 11, 4625−4630. LinkAbstract

      We developed a neural network model that predicts the electrocatalytic activities of N2 reductions on wire array electrodes, which shortens the time of morphology optimization by a factor of about 1000. The python codes are freely available at Github.

    26. “Electricity-Powered Artificial Root Nodule”, Lu, S.; Guan, X.; Liu, C.*, Nature Commun., 2020, 11, 1505. LinkAbstract

      We constructed an electricity-powered artificial root nodule of nitrogen fixation, which houses the O2 gradient and symbiotic diazotrophic bacteria found in its natural counterpart.

    27. “Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation”, Su, Y.†; Cestellos-Blanco, S.†; Kim, J. M.†; Shen, Y.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P.*, Joule2020, 4, 800−811. Link.
    28. “Cluster Size Control toward High Performance Solution Processed InGaZnO Thin Film Transistor”, Wang, Z.; Xu, G.; Zhao, Z.; Cai, L.; Wu, Q.; Cheng, P.; Zhao, Y.; Xue, J.; Wang, R.; Liu, C.*; Yang, Y.*, ACS Appl. Electron. Mater.2019, 1, 2483−2488. link.
    29. “A solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol”, Natinsky, B.; Lu, S.; Copeland, E.◊; Quintana, J.◊; Liu, C.*, ACS Cent. Sci., 2019, 5, 1584−1590. link. (Highlighted by ACS Cent. Sci.) Abstract
      Hero image_2-01

      Nanowire array electrode helps establish a catalytic cycle of incompatible steps, which enables electricity-assisted CH4-to-CH3OH conversion at ambient conditions. (Highlighted by ACS Cent. Sci.)

    30. “Nanowire photoelectrochemistry”, Deng, J.; Su, Y.; Liu, D.; Yang, P.*; Liu, B.*; Liu, C.*, Chem. Rev.2019, 15, 9221−9259. link. Abstract

      We provide a detailed discussion about the development and potential advantages of nanowires for photoelectrochemistry

    31. “Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction”, Rodrigues, R.; Guan, X.; Iñiguez, J.; Estabrook, D.; Chapman, J.◊; Huang, S.◊; Sletten, E.; Liu, C.*, Nature Catal., 20192, 407−414. Link. Abstract

      We developed a new method to accelerate the throughput of microbial CO2 reduction driven by electricity.

    32. “Two are better than one”, Natinsky, B.; Liu, C.*, Nature Chem. (News & Views), 2019, 11, 200−201. Link. Abstract

      We highlight a recent report that fine-tunes the interactions in the second coordinating sphere on a material’s surface for electrochemical reduction of CO2.

    33. “Modelling of Electrocatalytic Dinitrogen Reduction on Micro-structured Electrodes”, Lu, S.; Lee, D. H.◊; Liu, C.*, Small Methods2019, 3, 1800332. Link. Abstract

      We applied numerical simulation to study how the electrode morphology at nano-scale will change the reactivity of electrochemical reduction of N2.

    34. “Boron-Doped Graphene Catalyzes Dinitrogen Fixation with Electricity”, Deng, J.; Liu, C.*, Chem (preview), 20184, 1773-1774. Link. Abstract
      Figure 1

      We highlight one recent paper published in Joule which reports boron-doped graphene as catalysts for electrochemical dinitrogen reduction.

    35. Solar-powered CO2 reduction by a hybrid biological | inorganic system”, Liu, C.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; J. Photochem. Photobio. A, 2018358, 411−415, Link.Abstract

      Triple-junction solar cell powers microbes for CO2 reduction with overall energy efficiency up to 6%

    36. “Electrocatalytic nitrogen reduction at low temperature”, Deng, J.; Iniguez, J. A.; Liu, C.*; Joule, 2018, 2, 846−856, Link. Abstract

      This perspective discusses recent efforts devoted to nitrogen fixation in electrochemical systems operating at low temperatures, and the challenges confronting high selectivity for NH3 production as a result of the competition between the nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER).

    37. “Physical Biology of the Materials-Microorganism Interface”, Sakimoto, K. K.; Kornienko, N.; Cestellos-Blanco, S.; Lim, J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc., 2018140, 1978−1985. Link Abstract

      This perspective highlights the state-of-the-art research at the material-microorganism interface. Two basic qeustions are asked: 1) How do materials transfer energy and charge to microorganisms? 2) How do we design for bio- and chemocompatibility between seemingly unnatural partners?

    38. “Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach”, Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han. X.; Tsung, C.-K.; Ling, X. Y.*; Science Advances20184, eaar3208. Link
    39. “Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3“, Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; Nature Mater., 201716, 819−825. Link

    40. “Ambient nitrogen reduction cycle using a hybrid inorganic-biological system”, Liu, C.†; Sakimoto, K. K.†; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; PNAS2017114, 6450−6455. Link
    41. “Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid”, Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G.*; Chem. Sci., 20178, 4779−4794. Link
    42. “13C-Labeling the Carbon-Fixation Pathway of a Highly Efficient Artificial Photosynthetic System”, Liu, C.; Nangle, S. N.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; Faraday Discuss., 2017198, 529−537. Link
    43. “Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction” Kong, Q.†; Kim, D.†; Liu, C.; Yu, Y.; Su, Y.; Li, Y.;Yang, P.*; Nano Lett.201616, 5675−5680. Link
    44. “Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis” Liu, C.†; Colón, B. C.†; Ziesack, M.; Silver, P. A.*; Nocera, D. G.*; Science2016352, 1210−1213. Link
    45. “Single-nanowire photoelectrochemistry” Su, Y.†; Liu, C.†; Brittman S.; Tang, J.; Fu, A.; Kornienko, N.; Kong, Q.; Yang, P.*; Nature Nanotech.201611, 609−612. Link
    46. Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals” Liu, C.†; Gallagher, J. J.†; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.*; Chang, M. C. Y.*; Yang, P.*; Nano Lett., 201515, 3634−3639. Link
    47. “Hybrid bioinorganic approach to solar-to-chemical conversion” Nichols, E. M.†; Gallagher, J. J.†; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.*; Chang, M. C. Y.*; Chang, C. J.*; PNAS2015112, 11461−11466. Link
    48. “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction”, Zhang, L.†; Liu, C.†; Wong, A. B.; Resasco, J.; Yang, P.*; Nano Res.20158, 281−287. Link
    49. “Nanowires for Photovoltaics and Artificial Photosynthesis”, Yang, P.*; Brittman, S.; Liu, C.; Semiconductor Nanowires, Royal Society of Chemistry, 2014, Chapter 6, p277 (Book chapter).
    50. “Introductory lecture: Systems materials engineering approach for solar-to-chemical conversion” Liu, C.; Yang, P.*; Faraday Discuss.2014176, 9−16.(Perspective) Link
    51. Three-Dimensional Spirals of Atomic Layered MoS2″ Zhang, L.; Liu, K.; Wong, A. B.; Kim, J.; Hong, X.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.*; Yang, P.*; Nano Lett.201414, 6418−6423. Link
    52. Salt-Induced Self-Assembly of Bacteria on Nanowire Arrays” Sakimoto, K. K.; Liu, C.; Lim, J.; Yang, P.*; Nano Lett.201414, 5471−5476. Link
    53. “25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications” Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P.*; Adv. Mater.201426, 2137−2184. (Review) Link
    54. “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation” Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X.*; Nano Lett.201414, 1099−1105. Link
    55. Semiconductor Nanowires for Artificial Photosynthesis” Liu, C.; Dasgupta, N. P.; Yang, P.*; Chem. Mater.201426, 415−422. (Review) Link
    56. Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water” Sun, Y.†; Liu, C.†; Grauer, D. C.; Yano, J.; Long, J. R.*; Yang, P.*; Chang, C. J.*; J. Am. Chem. Soc.2013135, 17699−17702. Link
    57. “Femtosecond M2,3-Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe2O3” Vura-Weis, J.; Jiang, C.-M.; Liu, C.; Gao, H.; Lucas, J. M.; de Groot, F. M. F.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; J. Phys. Chem. Lett., 20134, 3667−3671. Link
    58. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction” Dasgupta, N. P.†; Liu, C.†; Andrews, S.; Prinz, F. B.; Yang, P.*; J. Am. Chem. Soc.2013135, 12932−12935. Link
    59. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential” Liu, B.†; Chen, H. M.†; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P.*; J. Am. Chem. Soc.2013135, 9995−9998. Link
    60. “A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting” Liu, C.†; Tang, J.†; Chen, H. M.; Liu, B.; Yang, P.*; Nano Lett.201313, 2989−2992. Link
    61. “Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates” Ling, X. Y.; Yan, R.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P.*; Nano Res.20147, 132−143. Link
    62. Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis” Liu, C.; Sun. J.; Tang, J.; Yang, P.*; Nano Lett.201212, 5407−5411. Link
    63. Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars” Gao, H.†; Liu, C.†; Jeong, H. E.; Yang, P.*; ACS Nano20126, 234−240. Link
    64. Light-Induced Charge Transport within a Single Asymmetric Nanowire” Liu, C.†; Hwang, Y. J.†; Jeong, H. E.; Yang, P.*; Nano Lett201111, 3755−3758. Link
    65. Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction” Sun. J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc., 2011133, 19306−19309. Link
    66. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System” Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D.*; J. Am. Chem. Soc.2010132, 8466−8473. Link
    67. Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness” Zhang, J.; Deng, Y.*; Wei, J.; Sun, Z.; Gu, D.; Bongard, H.; Liu, C.; Wu, H.; Tu, B.; Schüth, F.; Zhao, D.*; Chem. Mater.200921, 3996−4005. Link
    68. Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties” Yue, W.; Xu, X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H.; Zhao, D.; Zhou, W.*; Chem. Mater.200921, 2540−2546. Link
    69. “A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls” Liu, J.; Deng, Y.*; Liu, C.; Sun, Z.; Zhao, D.*; J. Colloid Interface Sci.2009333, 329−334. Link
    70. “Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin” Deng, Y.; Deng, C.; Qi, D.; Liu, C.; Liu, J.; Zhang, X.; Zhao, D.; Adv. Mater.200921, 1377−1382. Link
    71. “Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process” Liu, C.; Deng, Y.*; Liu, J.; Wu, H.; Zhao, D.; Micro. Meso. Mater.2008116, 633−640. Link
    72. Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander” Deng, Y.; Liu, J.; Liu, C.; Gu, D.; Sun, Z.; Wei, J.; Zhang, J.; Zhang, J.; Tu, B.; Zhao, D.*; Chem. Mater.200820, 7281−7286. Link
    73. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles” Deng, Y.; Liu, C.; Liu, J.; Zhang, F.; Yu, T.; Zhang, F.; Gu, D.; Zhao, D.; J. Mater. Chem.200818, 408−415. Link
    74. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer” Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D.; J. Mater. Chem.200818, 91−97. Link
    75. “Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach” Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A.; Wang, H.; Zhao, D.*; Chem. Mater.200719, 3271−3277. Link
    76. Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene” Deng, Y.; Yu, T.; Wan, Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu, C.; Wu, X.; Zhao, D.; J. Am. Chem. Soc.2007129, 1690−1697. Link